Minggu, 20 Maret 2016

TUGAS TERSTRUKTUR 5

Berapa kandungan amilosa dan amilopektin pada jagung, sagu, padi (nasi), gandum, kentang, dan ubi kayu?
Jawaban:
Amilum adalah jenis polisakarida yang banyak terdapat dialam, yaitu sebagian besar tumbuhan terdapat pada umbi, daun, batang, dan biji-bijian.

Amilum merupakan suatu senyawa organik yang tersebar luas pada kandungan tanaman. Amilum dihasilkan dari dalam daun-daun hijau sebagai wujud penyimpanan sementara dari produk fotosintesis. Amilum juga tersimpan dalam bahan makanan cadangan yang permanen untuk tanaman, dalam biji, jari-jari teras, kulit batang, akar tanaman menahun, dan umbi. Amilum merupakan 50-65% berat kering biji gandum dan 80% bahan kering umbi kentang.
Amilum terdiri dari dua macam polisakarida yang kedua-duanya adalah polimer dari glukosa, yaitu amilosa (kira-kira 20 – 28 %) dan sisanya amilopektin.

a)    Amilosa : Terdiri atas 250-300 unit D-glukosa yang berikatan dengan ikatan α 1,4 glikosidik. Jadi molekulnya menyerupai rantai terbuka.
b)   Amilopektin: Terdiri atas molekul D-glukosa yang sebagian besar mempunyai ikatan 1,4- glikosidik dan sebagian ikatan 1,6-glikosidik. adanya ikatan 1,6-glikosidik menyebabkan terdjadinya cabang, sehingga molekul amilopektin berbentuk rantai terbuka dan bercabang. Molekul amilopektin lebih besar dari pada molekul amilosa karena terdiri atas lebih 1000 unit glukosa.

1. JAGUNG


 

 Kandungan Pati

Komponen utama jagung adalah pati, yaitu sekitar 70% dari bobot biji. Komponen karbohidrat lain adalah gula sederhana, yaitu glukosa, sukrosa dan fruktosa, 1-3% dari bobot biji. Pati terdiri atas dua jenis polimer glukosa, yaitu amilosa dan amilopektin. 


Komposisi amilosa dan amilopektin di dalam biji jagung terkendali secara genetik. Secara umum, baik jagung yang mempunyai tipe endosperma gigi kuda (dent) maupun mutiara (flint), mengandung amilosa 25-30% dan amilopektin 70-75%. Namun jagung pulut (waxy maize) dapat mengandung 100% amilopektin. Suatu mutan endosperma yang disebut amylose-extender (ae) dapat menginduksi peningkatan nisbah amilosa sampai 50% atau lebih. Gen lain, baik sendiri maupun kombinasi, juga dapat memodifikasi nisbah amilosa dan amilopektin dalam pati jagung.

Amilopektin berpengaruh terhadap sifat sensoris jagung, terutama tekstur dan rasa. Pada prinsipnya, semakin tinggi kandungan amilopektin, tekstur dan rasa jagung semakin lunak, pulen, dan enak. Komposisi tersebut juga berpengaruh terhadap sifat amilografinya. Kandungan amilosa beberapa varietas lokal dan unggul nasional dapat dilihat pada Tabel 3 (Suarni 2005).

2. BERAS


Bagian terbesar beras didominasi oleh pati (sekitar 80-85%). Beras juga mengandung protein, vitamin (terutama pada bagian aleuron), mineral, danair. Pati beras dapat digolongkan menjadi dua kelompok yaitu amilosa pati dengan struktur tidak bercabang dan amilopektin dengan struktur bercabang. Perbandingan komposisi kedua golongan pati ini sangat menentukan warna (transparan atau tidak) dan tekstur nasi (lengket, lunak, keras, atau pera). Ketan hampir sepenuhnya didominasi oleh amilopektin sehingga sangat lekat, sementara beras pera memiliki kandungan amilosa melebihi 20% yang membuat butiran nasinya terpencar-pencar (tidak berlekatan) dan keras.

Berdasarkan kandungan amilosanya, beras dibagi menjadi empat golongan, yaitu ketan (2-9 persen), beras beramilosa rendah (9-20 persen), beras beramilosa sedang (20-25 persen) dan beras beramilosa tinggi (25-33 persen). Secara umum, beras memiliki bentuk polygonal bulat dengan ukuran bulat 3-8 mikron, dan suhu gelatinisasi 68-78oC.


Beras ketan dan beras biasa (non ketan) berbeda kandungan amylosa dan amylopektinnya. Amylosa berantai lurus dengan ikatan 1-4 alfa-glikosidik, sedangkan amylopektin berantai cabang dengan ikatan 1-4 alfa dan 1-6 beta glikosidik pada percabangannya dengan panjang rantai 20 – 26 satuan glukosa. Ketan (atau beras ketan), berwarna putih, tidak transparan, seluruh atau hampir seluruh patinya merupakan amilopektin.

Perbandingan antara amilosa dan amilopektin ini dijadikan dasar atau merupakan factor tunggal dalam menentukan mutu rasa dan tekstur nasi. Kandungan amilosa tersebut berkorelasi positif dengan tingkat kelemahan, kelengketan, warna dan kilap. Semakin tinggi kadar amilosa volume nasi yang diperoleh makin besar tanpa kecenderungan mengempes, hal ini dikarenakan amilosa mempunyai kemampuan retrogadasi yang lebih besar. Beras dengan kandungan amilosa tinggi menghasilkan nasi pera dan kering, sebaliknya beras dengan kandungan amilosa rendah menghasilkan nasi yang lengket dan lunak. Semakin tinggi kandungan atau kadar amylose yang terkandung, maka akan semakin berkurang keenakan rasanya karena semakin tinggi kadar amylose yang terkandung, maka struktur nasi yang diperoleh akan semakin keras dan mempunyai struktur pisah-pisah.

3. SAGU



Sagu adalah jenis makanan yang sering dikonsumsi oleh masyarakat di Indonesia. Jenis makanan ini banyak ditemui di wilayah Indonesia bagian timur seperti Maluku dan Irian serta sebagian di wilayah Sulawesi. Kandungan amilum pada sagu adalah sekitar 59.8%. Pada dasarnya sagu menjadi bahan makanan pokok pengganti nasi bagi masyarakat yang minim akan tanaman padi. Beras hanya dikonsumsi pada saat waktu tertentu saja, selebihnya mereka akan mengkonsumsi sagu, jagung, umbi-umbian dan ketela. Jenis makanan pokok ini berasal dari sari pati umbi-umbian, sering digunakan sebagai bahan makanan lainnya. Sagu sebenarnya memiliki peran yang sama seperti beras dan jagung pada umumnya yaitu sebagai sumber makanan pokok yang mengandung unsur karbohidrat.

Pati sagu tersusun atas dua fraksi penting yaitu amilosa yang merupakan fraksi linier dan amilopektin yang merupakan fraksi cabang. Fraksi terlarutnya adalah amilosa dengan kadar ±27% dengan struktur linier, sedangkan fraksi tidak terlarutnya adalah amilopektin dengan kadar ±73% dengan struktur bercabang (Yazid, et.al, 2006). Berdasarkan kandungan amilosanya, pati dibagi menjadi empat golongan, yaitu : Pati dengan kadar amilosanya tinggi (25 – 33 %); Pati dengan kadar amilosa menengah (20 – 25 %); Pati dengan kadar amilosa rendah (9 – 20 %); dan pati dengan kadar amilosa sangat rendah (< 9 %) (Winarno,2002).


Sagu memiliki kandungan karbohidrat, protein, lemak, kalsium, dan zat besi yang tinggi. Dengan kandungan tersebut, sagu berpotensi dijadikan sebagai bahan baku sirup glukosa yang dapat meningkatkan nilai tambah sagu. Pati sagu mengandung 27% amilosa dan 73% amilopektin. 

Perbandingan komposisi kadar amilosa dan amilopektin akan mempengaruhi sifat pati. Semakin tinggi kadar amilosa maka pati bersifat kurang kering, kurang lekat dan mudah menyerap air (higroskopis). Komposisi kimia sagu asal Indonesia dapat dilihat pada tabel berikut :



Tepung Sagu adalah bahan makanan yang biasa dikonsumsi oleh masyarakat Indonesia.  Tepung Sagu mengandung energi sebesar 209 kilokalori, protein 0,3 gram, karbohidrat 51,6 gram, lemak 0,2 gram, kalsium 27 miligram, fosfor 13 miligram, dan zat besi 0,6 miligram.  Selain itu di dalam Tepung Sagu juga terkandung vitamin A sebanyak 0 IU, vitamin B1 0,01 miligram dan vitamin C 0 miligram.  Hasil tersebut didapat dari melakukan penelitian terhadap 100 gram Tepung Sagu, dengan jumlah yang dapat dimakan sebanyak 100 %.

Tepung sagu kaya dengan karbohidrat (pati) namun sangat miskin gizi lainnya. 100 gram sagu kering setara dengan 355 kalori. Di dalamnya rata-rata terkandung 94 gram karbohidrat, 0,2 gram protein, 0,5 gram serat, 10 mg kalsium, 1,2 mg besi, dan lemak, karoten, tiamin, dan asam askorbat dalam jumlah kecil.

Walaupun gizi yang dikandung tidak tinggi, sagu juga mempunyai beberapa manfaat yang baik bagi tubuh. Diantaranya adalah tidak cepat meningkatkan kadar glukosa dalam darah sehingga cukup aman dikonsumsi oleh penderita diabetes melitus. Serat pangan pada sagu memiliki zat yang bisa berfungsi sebagai pre-biotik, menjaga mikroflora usus, meningkatkan kekebalan tubuh, mengurangi resiko terjadinya kanker usus, mengurangi resiko terjadinya kanker paru-paru, mengurangi kegemukan, mempermudah buang air besar.

Sagu juga sering dikonsumsi bagi yang sedang diet karena dapat memberikan efek mengenyangkan, tetapi tidak menyebabkan gemuk. Untuk mengimbangi kandungan gizinya yang tidak terlalu tinggi, ada baiknya olahan sagu ditambah bahan-bahan kaya protein dan sayur mayur. Seperti Dunui atau bubur sagu, sako-sako, Nasi sagu (Hinole), Kue Kering (Bagea). Di daerah maluku sagu dapat pula di olah menjadi  Sagu Keju, Ketupat Sayur, dan Bubur Kacang Hijau Sagu.

4. GANDUM


Gandum (Triticum spp.) merupakan tanaman serealia dari suku padi-padian yang kaya akan karbohidrat. Selain sebagai bahan makanan, gandum dapat pula diolah sebagai bahan-bahan industri yang penting, baik bentuk karbohidrat utamanya atau komponen lainnya.

Kandungan amilosa dalam pati gandum adalah 25% sedangkan amilopektinnya sebesar 75%. Dalam produk makanan, amilopektin bersifat merangsang terjadinya proses mekar (puffing) dimana produk makan yang berasal dari pati yang kandungan amilopektinnya tinggi akan bersifat ringan, porus, garing dan renyah. Hal ini dikarenakan amilopektin memiliki sifat mudah mengembang dan membentuk koloid dalam air. Kebalikannya pati dengan kandungan amilosa tinggi, cenderung menghasilkan produk yang keras, pejal, karena proses mekarnya terjadi secara terbatas (Pudjihastuti, 2010). Oleh karena itulah tepung gandum utuh cocok digunakan untuk pembuatan roti dan kue karena pati gandum mengandung amilopektin yang tinggi yang sangat berpengaruh terhadap swelling properties (sifat mengembang pada pati).

Kadar amilosa pada gandum berhubungan dengan indeks glisemiknya dan daya cerna pati. Kandungan amilosa dalam gandum utuh yang cukup tinggi yaitu sebesar 25%, menyebabkan daya cerna pati serta indeks glisemik gandum yang rendah. Indeks glisemik gandum utuh adalah 55-69 (Foster dan Miler, 1995). Indeks glisemik dan daya cerna pati yang rendah menyebabkan proses pencernaan karbohidrat di dalam tubuh lamban karena karbohidrat tidak langsung dicerna menjadi gula darah, sehingga makanan olahan yang berasal dari gandum utuh sangat baik untuk penederita diabetes mellitus. 

5. UBI KAYU


Umbi akar singkong banyak mengandung glukosa dan dapat dimakan mentah. Dari umbi ini dapat pula dibuat tepung tapioka. Tapioka adalah pati yang diperoleh dari hasil ekstrak ubi kayu, dimana pati itu terdiri dari dua fraksi yang dapat dipisahkan dengan air panas. Fraksi terlarut disebut amilosa dan yang tidak larut disebut amilopektin. Tepung tapioca mengandung 17 % amilosa dan 83 % amilopektin. Perbandingan amilosa dan amilopektin mempengaruhi sifat kelarutan dan derajat gelatinisasi pati.

Semakin kecil kandungan amilosa atau semakin tinggi kandungan amilopektinnya, maka pati cenderung menyerap air lebih banyak (Tjokroadikusumo, 1986). Gelatinisasi suhu berkisar antara 58,8oC-70oC. Pati yang kandungan amilopektinnya tinggi akan membentuk gel yang tidak kaku, sedangkan pati yang kandungan amilopektinnya rendah akan membentuk gel yang kaku. Pati jagung berbentuk bulat dengan ukuran granula patinya berkisar 5-25 mikron.


6. KENTANG



Kandungan karbohidrat pada kentang mencapai sekitar 18 persen, protein 2,4 persen dan lemak 0,1 persen. Total energi yang diperoleh dari 100 gram kentang adalah sekitar 80 kkal.Dibandingkan beras, kandungan karbohidrat, protein, lemak, dan energi kentang lebih rendah. Namun, jika dibandingkan dengan umbi-umbian lain seperti singkong, ubi jalar, dan talas, komposisi gizi kentang masih relatif lebih baik. Kentang merupakan satu-satunya jenis umbi yang kaya vitamin C, kadarnya mencapai 31 miligram per 100 gram bagian kentang yang dapat dimakan. Umbi-umbian lainnya sangat miskin akan vitamin C. Kebutuhan vitamin C sehari 60 mg, untuk memenuhinya cukup dengan 200 gram kentang. Kadar vitamin lain yang cukup menonjol adalah niasin dan B1 (tiamin). Dengan mengkonsumsi sebuah umbi kentang yang berukuran sedang, sepertiga kebutuhan vitamin C (33 persen) telah tercapai. Demikian juga halnya dengan sebagian besar kebutuhan akan vitamin B dan zat besi.

Kandungan amilum pada kentang adalah sekitar 59,7%. Bentuk dominan dari karbohidrat ini adalah pati. Bila digoreng, kentang hanya akan mengandung karbohidrat sebesar 27%. Sedangkan penyajian dalam bentuk direbus, akan memberikan karbohidrat yang lebih besar, yaitu sebesar 35%.

Kamis, 17 Maret 2016

DISAKARIDA DAN POLISAKARIDA

DISAKARIDA

Disakarida terdiri atas dua monosakarida yang dihubungkan oleh suatu ikatan glikosidik, ikatan kovalen yang terbentuk antara dua monosakarida melalui reaksi dehidrasi, misalnya maltosa merupakan suatu disakarida yang dibentuk melalui penyatuan dua molekul glukosa. Juga dikenal sebagai gula malto. Maltosa merupakan bahan untuk pembuatan bir. Laktosa, gula yang ditemukan dalam susu, merupakan disakarida lain, yang terdiri atas sebuah molekul glukosa yang berikatan dengan sebuah molekul galaktosa. Disakarida yang paling banyak di alam adalah sukrosa, yaitu gula yang sehari – hari kita konsumsi. Kedua monomernya adalah glukosa dan fruktosa. Tumbuhan organ nonfotosintetik lainnya dalam bentuk sukrosa.
Disakarida adalah karbohidrat yang tersusun dari 2 molekul monosakarida, yang dihubungkan oleh ikatan glikosida. Ikatan glikosida terbentuk antara atom C 1 suatu monosakarida dengan atom O dari OH monosakarida lain. Hidrolisis 1 mol disakarida akan menghasilkan 2 mol monosakarida. Berikut ini beberapa disakarida yang banyak terdapat di alam.
Salah satu contoh reaksi pembentukan disakarida adalah sebagai berikut :

C6H12O6 + C6H12O6                          C12H22O12 + H2O
                       (monosakarida)                                    (disakarida)
Dalam reaksi tersebut di atas terjadi pelepasan air. Beberapa jenis disakarida yang penting adalah laktosa, sukrosa, dan maltosa.

1.      Maltosa
Maltosa adalah suatu disakarida dan merupakan hasil dari hidrolisis parsial tepung (amilum). Maltosa tersusun dari molekul α-D-glukosa dan β-D-glukosa.

                                 Struktur maltosa
Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antarunit yaitu menghubungkan C 1 dari α-D-glukosa dengan C 4 dari β-D-glukosa. Konfigurasi ikatan glikosida pada maltosa selalu α karena maltosa terhidrolisis oleh α-glukosidase. Satu molekul maltosa terhidrolisis menjadi dua molekul glukosa.

Amilum terdiri dari 2 fraksi (dapat dipisah kan dengan air panas):
    1.      Amilosa
a) Larut dengan air panas
b) Mempunyai struktur rantai lurus
    2.      Amilopektin
a) Tidak larut dengan air panas
b) Mempunyai struktur rantai bercabang

Peranan perbandingan amilosa dan amilo pektin terlihat pada serelia; Contohnya beras, semakin kecil kandungan amilosa atau semakin tinggi kandungan amilopektinnya, semakin lekat nasi tersebut. Pulut sedikit sekali amilosanya (1-2%), beras mengandung amilosa > 2% Berdasarkan kandungan amilosanya, beras (nasi) dapat dibagi menjadi 4 golongan:
a)                   Amilosa tinggi 25-33%
b)                  Amilosa menengah 20-25%
c)                   Amilosa rendah 9-20%
d)                  Amilosa sangat rendah < 9%
2.      Sukrosa
Sukrosa terdapat  dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α.
Struktur sukrosa
  Sukrosa terhidrolisis oleh enzim invertase menghasilkan α-D-glukosa dan β-D-fruktosa. Campuran gula ini disebut gula inversi, lebih manis daripada sukrosa.

Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air tidak digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal.

Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi.

3.      Laktosa
Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul  β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4'-β.

                                Struktur laktosa
Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.

Contoh Disakarida

Ikatan dan Sifat

Perhatikan beberapa disakarida yang mungkin ketika monosakarida berikatan satu sama lain, karena ikatan glikosidik dapat dibentuk antara kelompok hidroksil pada komponen gula. Sebagai contoh, dua molekul glukosa dapat bergabung untuk membentuk maltosa, trehalosa, atau selobiosa. Meskipun disakarida ini dibuat dari komponen gula yang sama, molekul mereka berbeda dengan sifat kimia dan fisik yang berbeda satu sama lain.

Klasifikasi Disakarida

Ada dua jenis Disakarida. Mereka seperti yang digambarkan di bawah ini
1.      Disakarida yang mengalami Pengurangan : Dalam jenis disakarida ini, gula pereduksi adalah unit ‘hemiasetal’ bebas. Hemiasetal adalah senyawa yang berasal berturut-turut dari aldehid dan keton. Aldehida adalah senyawa organik. Gugus fungsi ini, dengan struktur R-CHO, terdiri dari pusat karbonil terikat pada hidrogen dan gugus R. -CHO disebut gugus aldehid atau formil. Banyak wewangian adalah aldehida. Keton juga senyawa organik dengan struktur RC (= O) R ‘di mana C = O adalah kelompok keton. Contoh disakarida dengan pengurangan ini adalah maltosa dan Selobiosa.
2.      Disakarida Non-pengurangan: Pada tipe ini, monosakarida memiliki satuan hemiasetal bebas. Contoh disakarida non-pengurangan adalah sukrosa dan Trehalosa.

Peran Disakarida dalam Kesehatan Manusia

Terlalu banyak disakarida menyebabkan lonjakan gula darah dan menyebabkan penyakit yang disebut “Diabetes”. Namun, beberapa jenis disakarida yang digunakan karena mereka menyebabkan lonjakan gula darah lebih sedikit dan lebih disukai oleh pasien ‘diabetes tipe 2 ‘ . mis, Maltosa. Sementara molekul glukosa masih ada, mereka cenderung menciptakan lonjakan kurang dari kadar gula darah dan diserap ke dalam tubuh lebih mudah daripada gula meja biasa. Tapi, terlalu banyak dari disakarida yang lebih aman ini dapat menyebabkan diare.

POLISAKARIDA
      Polisakarida adalah makromolekul, polimernya dihubungkan dengan ikatan glikosidik. Beberapa polisakarida berfungsi sebagai materi simpanan atau cadangan yang nantinya diperlukan sebagai dihidrolisis untuk menyediakan gula bagi sel. Polisakarida lain berfungsi sebagai materi pembangun (penyusun) untuk struktur yang melindungi sel atau keseluruhan organisme.

Dalam setiap gram karbohidrat yang terpakai oleh jaringan akan menghasilkan 4,1 kalori. Karbohidrat dapat disimpan dalam tubuh, yaitu dalam hati, otot, dan sebagian kecil dalam darah. Apabila dalam makanan kita kekurangan karbohidrat maka darah akan bersifat asam atau acidosis.
Fungsi Polisakarida

Beberapa polisakarida berfungsi sebagai bentuk penyimpan bagi monosakarida dan yang lainnya berfungsi sebagai unsur struktural di dalam dinding sel dan jaringan pengikat. Glikogen dan pati merupakan polisakarida simpanan yang terdapat pada tumbuhan dan manusia sedangkan selulosa merupakan polisakarida strukural yang berfungsi sebagai tulang semu bagi tumbuhan. Pati dan glikogen  dihidrolisa di dalam saluran pencernaan oleh amilase, sedangkan selulosa tidak dapat dicerna. Namun, selulosa mempunyai peran penting bagi manusia karena merupakan sumber serat dalam makanan manusia.
Jenis-jenis Polisakarida

A.    Pati
Pati adalah polisakarisa simpanan yang terdapat pada tumbuhan. Hampir semua sel tanaman mampu menghasilkan pati. Pati banyak terdapat dalam golongan umbi seperi kentang dan pada biji-bijian seperti jagung. Pati mengandung dua jenis polimer glukosa yaitu, α-amilasi (amilosa) dan amilopektin. Amilosa merupakan polisakarida linear dari rantai unit-unit D-glukosa yang panjang, tidak bercabang yang dihubungkan oleh ikatan α (1-4)-glukosida dengan berat molekul yang bervariasi. Amilopektin memiliki berat molekul yang tinggi, memiliki banyak cabang, yang terdiri dari beberapa unit glukosa berantai lurus. Unit tersebut dihubungkan oleh ikatan glikosidik pada ikatan α (1-4) tetapi titik percabangannya merupakan ikatan α (1-6). Amilosa memberi warna biru dengan adanya iodium sedangkan amilopektin akan menghasilkan warna jingga sampai merah bila ditambahkan larutan iodium.

B.     Glukogen
Glikogen adalah polisakarisa simpanan pada hewan dan manusia. Strukturnya serupa dengan amilopektin, namun jumlah percabangannya lebih banyak. Glikogen bercabang dari D-glukosa dalam ikatan α (1-4) dan ikatan pada percabangannya adalah α (1-6). Glikogen banyak diemukan di dalam hati dan urat daging.

C.     Selulosa
Selulosa atau polisakarida struktur adalah polisakarida yang banyak terdapat dalam tumbuhan, terutama pada bagian dinding sel. Selulosa berfungsi untuk menjaga strukur sel tersebut. Selulosa berupa rantai lurus homopolisakarida yang disusun oleh unit-unit D-glikopiranosa melalui ikatan β (1-4)-glikosida. Selulosa tidak dapat dipecahkan oleh α atau β-amilase dan tidak dapat dicerna oleh vertebrata kecuali oleh hewan ruminan (seperti sapi, kambing, dan domba) yang mengandung bakteri penghasil selulosa. Bakteri selulosa ini dapat memecahkan selulosa menjadi D-glukosa sehingga dapat digunakan sebagai makanan pada organisme tingkat tinggi lainnya.

PERMASALAHAN :
berdasarkan dari uraian diatas, dari jenis-jenis polisakarida tersebut, apakah peran dari setiap jenis polisakarida dalam kehidupan sehari hari?

Minggu, 13 Maret 2016

TUGAS TERSTRUKTUR MONOSAKARIDA DAN PENENTUAN STEREOKIMIA

1.      Tuliskan struktur minimal 3 dari Triosa, Tetrosa, Pentosa dan Heksosa serta identifikasi atom khiral nya. contoh triosa ada dua variasi yaitu L dan D yang mana yang paling berguna untuk makhluk hidup !
Jawab :

1.      Triosa
Triosa adalah monosakarida yang mengandung 3 atom C. Triosa dibedakan menjadi aldotriosa (triosa yang mengandung gudus aldehid), misalnya gliseraldehid; dan ketotriosa (triosa yang mengandung gugus keton), misalnya dihidroksi keton.

2.      Tetrosa
Tetrosa adalah monosakarida yang mengandung 4 atom C. Tetrosa dibedakan menjad aldotetrosa (tetrosa yang mengandung gudus aldehid), misalnya D-eritrosa dan D-treosa; dan ketotetrosa (tetrosa yang mengandung gugus keton), misalnya D-eritrulosa.

Tetrosa

    
                        VARIASI STRUKTUR C4
`
Struktur Monosakarida yang paling penting pada tetrosa yaitu: Xylulosa yaitu Gula ini tidak banyak ditemui, walaupun beberapa bentuk berperan dalam proses fotosintesis dan respirasi.




Tetrosa terdiri dari eritrosam treosa dan eritrulosa. tertrosa memiliki peran dalam metabolisme manusia. tetrosa jenisertirosa yang berperan dalam proses metabolism yaitu sebagai pembentukan eritrosit (sel darah merah).


3.      Pentosa
Pentosa adalah monosakarida yang mengandung 5 atom C. Pentosa dibedakan menjadi aldopentosa (pentosa yang mengandung gudus aldehid), misalnya ribosa, deoksiribosa, arabinosa, lixosa, dan xilosa; dan ketopentosa (pentosa yang mengandung gugus keton), misalnya xilulosa.
   VARIASI STRUKTUR C5
Struktur Monosakarida yang paling penting pada pentosa yaitu dua jenis pentose (ribose dan deoksiribosa) juga membentuk unsure pembangun utama untuk asam nukleat, yang penting bagi semua kehidupan. Senyawa ini sangat penting dalam fotosintesis dan respirasi.

4.      Heksosa
Heksosa adalah monosakarida yang mengandung 6 atom C. Heksosa dibedakan menjadi aldoheksosa (heksosa yang mengandung gudus aldehid), misalnya glukosa, galaktosa, dan manosa; dan ketoheksosa (heksosa yang mengandung gugus keton), misalnya fruktosa.



Contoh triosa L dan D
Dua aldotetrosa yang lain mempunyai gugus hidroksil pada atom karbon 3 diproyeksikan kekiri, konfigurasinya sama seperti pada L-gliseraldehid. Dengan dasar konfigurasi dari karbon chiral, semua karbohidrat dapat digolongkan kedalam satu dari dua subdivisi utama atau keluarga, keluarga D atau keluarga L. Semua golongan D monoskarida mempunyai gugusan hidoksil dari atomkarbon chiral paling bawah diproyeksi kekanan pada proyeksi fischer. Gula L justru berlawanan, gugus hidroksil pada hidroksil atom karbon chiral paling bawah diproyeksikan kekiri.
 
Di alam lebih banyak ditemukan monosakarida yang berisomer D, maka semua monosakarida yang ada di alam dianggap berasal dari D-Gliseraldehida. Dengan sistematis ditemukan cara menentukan rumus struktur kimia monosakarida yang banyak ditemukan di alam ini. Dengan cara menyisipkan gugus H-C-OH dan gugus HO-C-H berganti-ganti diantara atom C nomor 1 dan nomor 2 pada D-Gliseraldehida. Dengan demikian maka didapatlah 4 aldopentosa dan 8 aldoheksosa.
2. Tetrosa mana yang berfungsi pada proses metabolisme manusia?
Jawab :
    tertrosa terdiri dari eritrosam treosa dan eritrulosa. tertrosa memiliki peran dalam metabolisme manusia. tetrosa jenis ertirosa yang berperan dalam pembentukan eritrosit (sel darah merah)

3.   Reaksi Disakarida dan ikatan glioksida, mengapa dapat terjadi ?
Jawab :
Disakarida
Disakarida adalah karbohidrat yang tersusun dari 2 molekul monosakarida, yang dihubungkan oleh ikatan glikosida. Ikatan glikosida terbentuk antara atom C 1 suatu monosakarida dengan atom O dari OH monosakarida lain. Hidrolisis 1 mol disakarida akan menghasilkan 2 mol monosakarida. Berikut ini beberapa disakarida yang banyak terdapat di alam.
1.   Maltosa
Maltosa adalah suatu disakarida dan merupakan hasil dari hidrolisis parsial tepung (amilum). Maltosa tersusun dari molekul α-D-glukosa dan β-D-glukosa.
Struktur maltosa
Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antarunit yaitu menghubungkan C 1 dari α-D-glukosa dengan C 4 dari β-D-glukosa. Konfigurasi ikatan glikosida pada maltosa selalu α karena maltosa terhidrolisis oleh α-glukosidase. Satu molekul maltosa terhidrolisis menjadi dua molekul glukosa.
1.       Sukrosa
Sukrosa terdapat  dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –
α.
Struktur sukrosa
Sukrosa terhidrolisis oleh enzim invertase menghasilkanα-D-glukosa dan β-D-fruktosa. Campuran gula ini disebut gula inversi, lebih manis daripada sukrosa.
Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air tidak digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal.
Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi. 
1.     Laktosa
Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul  
β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4'-β.
Struktur laktosa
Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.
Pembentukan
Disakarida terbentuk ketika dua monosakarida bergabung bersama dan satu molekul air dihilangkan, proses ini dikenal sebagai reaksi dehidrasi. Misalnya, gula susu (laktosa) terbentuk dari glukosa dan galaktosa di mana gula dari gula tebu dan gula bit (sukrosa) terbentuk dari glukosa dan fruktosa. Maltosa, disakarida terkenal lainnya, terbentuk dari dua molekul glukosa. Dua monosakarida yang terbentuk melalui reaksi dehidrasi (juga disebut reaksi kondensasi) atau sintesis dehidrasi) yang menyebabkan hilangnya sebuah molekul air dan pembentuk satu ikatan glikosida.
Sifat-sifat
Ikatan glikosida dapat terbentuk antara setiap gugus hidroksil pada komponen monosakarida. Jadi, bahkan bila kedua komponen gula sama (misalnya, glukosa), berbeda kombinasi ikatannya (regiokimia) dan stereokimia (alfa- atau beta-) dihasilkan sebagai disakarida yang merupakandistereomer dengan sifat-sifat kimia dan fisika yang berbeda.
Bergantung pada konstituen monosakaridanya, disakarida terkadang kristal, terkadang larut dalam air, dan terkadang terasa manis dan dan terasa tajam.
  
4.  Bagaimanakah cara mengidentiikasi secara kimia monosakarida (Fruktosa, Glukosa, dan Galaktosa)!
Jawab:
1.      Glukosa
Glukosa merupakan suatu aldoheksosa, disebut juga dekstrosa karena memutar bidang polarisasi ke kanan. Glukosa merupakan komponen utama gula darah, menyusun 0,065- 0,11% darah kita.

Glukosa dapat terbentuk dari hidrolisis pati, glikogen, dan maltosa. Glukosa sangat penting bagi kita karena sel tubuh kita menggunakannya langsung untuk menghasilkan energi. Glukosa dapat dioksidasi oleh zat pengoksidasi lembut seperti pereaksi Tollens sehingga sering disebut sebagai gula pereduksi.
  
2.      Galaktosa
Galaktosa merupakan suatu aldoheksosa. Monosakarida ini jarang terdapat bebas di alam. Umumnya berikatan dengan glukosa dalam bentuk laktosa, yaitu gula yang terdapat dalam susu. Galaktosa mempunyai rasa kurang manis jika dibandingkan dengan glukosa dan kurang larut dalam air. Seperti halnya glukosa, galaktosa juga merupakan gula pereduksi.

  
   
3.      Fruktosa
Fruktosa adalah suatu heksulosa, disebut juga levulosa karena memutar bidang polarisasi ke kiri. Merupakan satu-satunya heksulosa yang terdapat di alam.  Fruktosa merupakan gula termanis, terdapat dalam madu dan buah-buahan bersama glukosa.

Fruktosa dapat terbentuk dari hidrolisis suatu disakarida yang disebut sukrosa. Sama seperti glukosa, fruktosa adalah suatu gula pereduksi.
 
Struktur fruktosa: (a) struktur terbuka (b) struktur siklis

Cara Mengidentifikasinya :

1.      Uji Molisch
Uji molisch adalah uji kimia kualitatif untuk mengetahui adanya karbohidrat. Uji Molisch dinamai sesuai penemunya yaitu Hans Molisch, seorang alhi botani dari Australia.  Uji ini didasari oleh reaksi dehidrasi karbohidrat oleh asam sulfat membentuk cincin furfural yang berwarna ungu. Reaksi positif ditandai dengan munculnya cincin ungu di purmukaan antara lapisan asam dan lapisan sampel.

Sampel yang diuji dicampur dengan reagent Molisch, yaitu α-naphthol yang terlarut dalam etanol. Setelah pencampuran atau homogenisasi, H2SO4 pekat perlahan-lahan dituangkan melalui dinding tabung reaksi agar tidak sampai bercampur dengan larutan atau hanya membentuk lapisan.
H2SO4 pekat (dapat digantikan asam kuat lainnya) berfungsi untuk menghidrolisis ikatan pada sakarida untuk menghasilkan furfural. Furfural ini kemudian bereaksi dengan reagent Molisch, α-naphthol membentuk cincin yang berwarna ungu.
2.      Uji Seliwanoff
Uji Seliwanoff adalah sebuah uji kimia yang membedakan gula aldosa dan ketosa. Ketosa dibedakan dari aldosa via gugus fungsi keton/aldehida gula tersebut. Jika gula tersebut mempunyai gugus keton, ia adalah ketosa. Sebaliknya jika ia mengandung gugus aldehida, ia adalah aldosa. Uji ini didasarkan pada fakta bahwa ketika dipanaskan, ketosa lebih cepat terdehidrasi daripada aldosa.

Seliwanoff-Reaction
Reagen uji Seliwanoff ini terdiri dari resorsinol dan asam klorida pekat:
1.            Asam reagen ini menghidrolisis polisakarida dan oligosakarida menjadi gula sederhana.
2.            Ketosa yang terhidrasi kemudian bereaksi dengan resorsinol, menghasilkan zat berwarna merah tua. Aldosa dapat sedikit bereaksi dan menghasilkan zat berwarna merah muda.

Fruktosa dan sukrosa merupakan dua jenis gula yang memberikan uji positif. Sukrosa menghasilkan uji positif karena ia adalah disakarida yang terdiri dari furktosa dan glukosa.
3.            Uji Benedict
Pada uji Benedict, pereaksi ini akan bereaksi dengan gugus aldehid, kecuali aldehid dalam gugus aromatik, dan alpha hidroksi keton. Oleh karena itu, meskipun fruktosa bukanlah gula pereduksi, namun karena memiliki gugus alpha hidroksi keton, maka fruktosa akan berubah menjadi glukosa dan mannosa dalam suasana basa dan memberikan hasil positif dengan pereaksi benedict. Satu liter pereaksi Benedict dapat dibuat dengan menimbang sebanyak 100 gram sodium carbonate anhydrous, 173 gram sodium citrate, dan 17.3 gram copper (II) sulphate pentahydrate, kemudian dilarutkan dengan akuadest sebanyak 1 liter.

Untuk mengetahui adanya monosakarida dan disakarida pereduksi dalam makanan, sample makanan dilarutkan dalam air, dan ditambahkan sedikit pereaksi benedict. Dipanaskan dalam waterbath selamaa 4-10 menit. Selama proses ini larutan akan berubah warna menjadi biru (tanpa adanya glukosa), hijau, kuning, orange, merah dan merah bata atau coklat (kandungan glukosa tinggi). Sukrosa (gula pasir) tidak terdeteksi oleh pereaksi Benedict. Sukrosa mengandung dua monosakrida (fruktosa dan glukosa) yang terikat melalui ikatan glikosidic sedemikian rupa sehingga tidak mengandung gugus aldehid bebas dan alpha hidroksi keton. Sukrosa juga tidak bersifat pereduksi.

Uji Benedict dapat dilakukan pada urine untuk mengetahui kandungan glukosa. Urine yang mengandung glukosa dapat menjadi tanda adanya penyakit diabetes. Sekali urine diketahui mengandung gula pereduksi, test lebih jauh mesti dilakukan untuk memastikan jenis gula pereduksi apa yang terdapat dalam urine. Hanya glukosa yang mengindikasikan penyakit diabetes.

4.            Uji Barfoed
Pada uji barfoed untuk mendeteksi karbohidrat yang tergolong monosakarida. Pereaksi barfoed terdiri dari kupri asetat dan asam asetat. Ke dalam 5 ml peraksi dalam tabung reaksi ditambahkan 1 ml larutan contoh, kemudian tabung reaksi ditempatkan dalam air mendidih selama 1 menit. Endapan berwarna merah orange menunjukkan adanya monosakarida dalam contoh.  Ion Cu2+ dari pereaksi Barfoed dalam suasana asam akan direduksi lebih cepat oleh gula reduksi monosakarida dari pada disakarida dan menghasilkan Cu2O (kupro oksida) berwarna merah bata. Hal inilah yang mndasari uji Barfoed.

            Pada uji Barfoed, yang terdeteksi monosakarida membentuk endapan merah bata karena terbentuk hasil Cu2O. berikut reaksinya :

5.            Uji Asam Muzat
Oksidasi terhadap karbohidrat dengan asam nitrat pekat akan menghasilkan asam yang dapat larut. Namun, laktosa dan galaktosa menghasilkan asam musat yang tidak dapat larut.