Rabu, 03 Februari 2016

Alkil Halida : (Rx substitusi dan eliminasi)



ALKIL HALIDA

Alkil Halida: adalah senyawa-senyawa yang mengandung halogen yang terikat pada atom karbon jenuh (atom karbon yang terhibridisasi sp3).

Contohnya :

     5-Bromo-2,4-dimetilheptana                                       2-Bromo-4,5-dimetilheptana

KLASIFIKASI ALKIL HALIDA

Berdasarkan jumlah atom karbon yang terikat pada atom karbon yang mengandung halogen.

1.         Metil halida (CH3X):

2.         Alkil halida primer (1o): Sebuah karbon yang terikat pada karbon C-X.

                         CH3CH2 – CH2X

3. Alkil halida sekunder (2o): Dua karbon terikat pada karbon C-X.

                          CH3CH2 – CHX

                                                |

                                             CH3  

4. Alkil halida tersier (3o): Tiga karbon terikat pada karbon C-X.     

                                          CH3

                                            |

                              H3C – C – X

                                            |

                                         CH3

                                         



STRUKTUR ALKIL HALIDA

Ikatan C-X (karbon-halogen) : overlap antara orbital hibrid sp3C dengan orbital halogen à C mempunyai geometri tetrahedral dengan sudut ikatan ±109o.         

                                                 

Halogen lebih elektronegatif dibanding karbon:
à Ikatan C – X  akan terpolarisasi: elektron ikatan ditarik lebih ke arah halogen (x) dibanding ke arah karbon (c)
à Karbon bermuatan positif parsial (d+) dan halogen negatif parsial (d-)

                                                 d+      d-

                                                 C       X

Karena atom karbon terpolarisasi positif, maka alkil halida adalah suatu elektrofil.

ELEKTROFIL (= suka elektron) : yaitu suatu reagen yang miskin elektron (electron-poor) dan dapat membentuk ikatan dengan menerima sepasang elektron dari suatu reagen yang kaya elektron(elektron-rich-reagent).

REAKSI SUBSTITUSI NUKLEOFILIK  dan  REAKSI ELIMINASI

a.       Reaksi Substitusi, yaitu reaksi yang atom, ion atau gugus dari suatu substrat digantikan oleh atom, ion, atau gugus lain

1). Substitusi Nukleofilik  (SN) : Penggantian atom atau gugus atom dari suatu molekul atau nukleofil.

Nukleofil: spesies yang mempunyai atom dengan orbital terisi 2 elektron (pasangan elektron)

2). Substitusi Elektrofilik (SE)

Pada umumnya terjadi pada senyawa aromatik, sedangkan pada alifatik sangat jarang secara umum persamaan reaksi sbb:

R–Y        +        E+            R–E        +      Y+ 

Substrat      Pereaksi       Produk         Leaving grup

     Penyerang

1.                  Reaksi Substitusi Nukleofilik (SN)

Suatu nukleofil (Z:) menyerang alkil halida pada atom karbon hibrida-sp3 yang mengikat halogen (X), menyebabkan terusirnya halogen oleh nukleofil. Halogen yang terusir disebut gugus pergi. Nukleofil harus mengandung pasangan elektron bebas yang digunakan untuk membentuk ikatan baru dengan karbon. Hal ini memungkinkan gugus pergi terlepas dengan membawa pasangan elektron yang tadinya sebagai elektron ikatan. Ada dua persamaan umum yang dapat dituliskan:
  
Contoh masing-masing reaksi adalah:
 

2.                  Mekanisme Reaksi Substitusi Nukleofilik

Pada dasarnya terdapat dua mekanisme reaksi substitusi nukleofilik. Mereka dilambangkan dengan SN2 adan SN1. Bagian SN menunjukkan substitusi nukleofilik, sedangkan arti 1 dan 2 akan dijelaskan kemudian. 
A. Reaksi SN2 Mekanisme SN2 adalah proses satu tahap yang dapat digambarkan sebagai berikut:
 
Nukleofil menyerang dari belakang ikatan C-X. Pada keadaan transisi, nukleofil dan gugus pergi berasosiasi dengan karbon di mana substitusi akan terjadi. Pada saat gugus pergi terlepas dengan membawa pasangan elektron, nukleofil memberikan pasangan elektronnya untuk dijadikan pasangan elektron dengan karbon. Notasi 2 menyatakan bahwa reaksi adalah bimolekuler, yaitu nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi dalam mekanisme reaksi. Adapun ciri reaksi SN2 adalah: 
1. Karena nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi, maka kecepatan reaksi tergantung pada konsentrasi kedua spesies tersebut. 
2. Reaksi terjadi dengan pembalikan (inversi) konfigurasi. Misalnya jika kita mereaksikan (R)-2-bromobutana dengan natrium hidroksida, akan diperoleh (S)-2-butanol.Ion hidroksida menyerang dari belakang ikatan C-Br. Pada saat substitusi terjadi, ketiga gugus yang terikat pada karbon sp3 kiral itu seolah-olah terdorong oleh suatu bidang datar sehingga membalik. Karena dalam molekul ini OH mempunyai perioritas yang sama dengan Br, tentu hasilnya adalah (S)-2-butanol. Jadi reaksi SN2 memberikan hasil inversi. 
3. Jika substrat R-L bereaksi melalui mekanisme SN2, reaksi terjadi lebih cepat apabila R merupakan gugus metil atau primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan ini adalah adanya efek rintangan sterik. Rintangan sterik gugus R meningkat dari metil < primer < sekunder < tersier. Jadi kecenderungan reaksi SN2 terjadi pada alkil halida adalah: metil > primer > sekunder >> tersier.

B. Reaksi SN1 Mekanisme SN1 dalah proses dua tahap. Pada tahap pertama, ikatan antarakarbon dengan gugus pergi putus.  
 


Gugus pergi terlepas dengan membawa pasangan elektron, dan terbentuklah ion karbonium. Pada tahap kedua (tahap cepat), ion karbonium bergabung dengan nukleofil membentuk produk
 


Pada mekanisme SN1, substitusi terjadi dalam dua tahap. Notasi 1 digunakan sebab pada tahap lambat hanya satu dari dua pereaksi yang terlibat, yaitu substrat. Tahap ini sama sekali tidak melibatkan nukleofil.

Berikut ini adalah ciri-ciri suatu reaksi yang berjalan melalui mekanisme SN1:

1. Kecapatan reaksinya tidak tergantung pada konsentrasi nukleofil. Tahap penentu kecepatan reaksi adalah tahap pertama di mana nukleofil tidak terlibat.

2. Jika karbon pembawa gugus pergi adalah bersifat kiral, reaksi menyebabkan hilangnya aktivitas optik karena terjadi rasemik. Pada ion karbonium, hanya ada a gugus yang terikat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk planar. Jadi nukleofil mempunyai dua arah penyerangan, yaitu dari depan dan dari belakang. Dan kesempatan ini masing-masing mempunyai peluang 50 %. Jadi hasilnya adalah rasemit. Misalnya, reaksi (S)-3-bromo-3-metilheksana dengan air menghasilkan alkohol rasemik.
 
Spesies antaranya (intermediate species) adalah ion karbonium dengan geometrik planar sehingga air mempunyai peluang menyerang dari dua sisi (depan dan belakang) dengan peluang yang sama menghasilkan X yang melalui mekanisme SN1-adalah campuran rasemik Reaksi substrat R akan berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Hal ini sesuai dengan urutan kestabilan ion karbonium, 3o > 2o >> 1o.

C. Perbandingan Mekanisme SN1 dan SN2 
Tabel berikut memuat ringkasan mengenai mekanisme substitusi dan mebandingkannya dengan keadaan-keadaan lain, seperti keadan pelarut dan struktur nukleofil.Tabel1: Perbandingan reaksi SN2 dengan SN1
   

Pada tahap pertama dalam mekanisme SN1 adalah tahap pembentukan ion, sehingga mekanisme ini dapat berlangsung lebih baik dalam pelarut polar. Jadi halida sekunder yang dapat bereaksi melalui kedua mekanisme tersebut, kita dapat mengubah mekanismenya dengan menyesuaikan kepolaran pelarutnya. Misalnya, mekanisme reaksi halida sekunder dengan air (membentuk alkohol) dapat diubah dari SN2 menjadi SN1 dengan mengubah pelarutnya dari 95% aseton-5% air (relatif tidak-polar) menjadi 50% aseton-50% air (lebih polar, dan pelarut peng-ion yanglebih baik). Kekuatan nukleofil juga dapat mengubah mekanisme reaksi yang dilalui oleh reaksi oleh reaksi SN. Jika nukleofilnya kuat maka mekanisme SN2 yang terjadi.



3.      Reaksi eliminasi, yaitu pelepasan atom atau gugus atom.

Merupakan reaksi samping pada reaksi substitusi, dikenal dengan eliminsi E1 dan E2.

a.       Mekanisme reaksi E1

Mekanisme reaksi E1 merupakan alternatif dari mekanisme reaksi SN1. Karbokation dapat memberikan sebuah proton kepada suatu basa dalam reaksi eliminasi. Mekanisme reaksi E1 terdiri dari dua tahap. Perhatikan contoh berikut :

Tahap 1.

Tahap 1 reaksi E1 berjalan lambat.
 
Tahap 2.

Tahap 2 reaksi E1 berjalan cepat.

 
Mekanisme reaksi E2 
Reaksi E2 menggunakan basa kuat seperti OHˉ, ORˉ, dan juga membutuhkan kalor. Dengan memanaskan alkil halida dalam KOH, CH3CH2ONa.  
 
Permasalahannya : 
Dari uraian diatas jika kekuatan nukleofil juga dapat mengubah mekanisme reaksi yang dilalui oleh reaksi SN. Jika nukleofilnya kuat maka mekanisme SN2 yang terjadi. Bagaimana mengetahui apakah suatu nukleofil adalah kuat atau lemah? Mohon bantuannya teman teman, terimakasih..
 



2 komentar:

  1. Hai mardhyati
    saya ERIKA SIMARE MARE,NIM RRA1C114001 akan mencoba.membantu permasalahan yang ada.pada artikel yang ada.posting
    menurut literatur yang saya baca
    Berikut ini ada beberapa petunjuk yang digunakan untuk mengetahui apakah suatu nukleofil adalah kuat atau lemah.
    1. Ion nukleofil bersifat nukleofil. Anion adalah pember elektron yang lebih baik daripada molekul netralnya.
    2. Unsur yang berada pada periode bawah dalam tabel periodik cenderung merupakan nukleofil yang lebih kuat daripada unsur yang berada dalam periode di atasnya yang segolongan.
    3. Pada periode yang sama, unsur yang lebih elektronegatif cenderung merupakan nukleofil lebih lemah (karena ia lebih kuat memegang elektron).
    Karena C dan N berada dalam periode yang sama, tidak mengherankan jika pada ion -:CN: , yang bereaksi adalah karbon, karena sifat nukleofilnya lebih kuat.

    Terimakasih
    semoga.membantu

    BalasHapus
  2. Haii diati,,
    Saya Ririn Eka Yuliana dengan nim RSA1C114012 akan membantu menjawab permasalahan diati dimana Kekuatan nukleofilik relatif dari atom dapat dijelaskan dengan melihat produk yang akan terbentuk jika atom-atom ini bertindak sebagai nukleofil. Kita bandingkan tiga molekul HF, H2O, dan NH3 dan lihat apa yang terjadi jika mereka
    membentuk sebuah ikatan untuk membentuk sebuah proton.
    Karena proton memiliki elektron, baik elektron untuk ikatan baru harus berasal dari pusat-pusat nukleofilik (yaitu F, O, dan N). Akibatnya, atom-atom ini akan memperoleh muatan positif. Jika hidrogen fluorida bertindak sebagai nukleofil, maka atom fluor melepas muatan positif. Karena atom fluor adalah sangat elektronegatif, tidak menerima muatan positif. Oleh karena itu, reaksi ini tidak terjadi. Oksigen sangat kurang elektronegatif dan dapat menerima muatan positif sedikit lebih baik, sehingga kesetimbangan adalah mungkin antara spesies diisi dan bermuatan.
    Nitrogen adalah elektronegatif setidaknya dari tiga atom dan mentolerir muatan positif dengan baik sehingga reaksi tidak dapat diubah dan garam terbentuk. Dengan demikian, nitrogen sangat nukleofilik dan biasanya akan bereaksi seperti itu, sedangkan halogen yang nukleofilik lemah dan jarang akan bereaksi seperti itu. Terakhir, perlu dicatat bahwa semua molekul ini nukleofil lemah dari anion mereka yang sesuai, yaitu HF, H2O, dan NH3 merupakan nukleofil yang lebih lemah masing-masing dari F-, OH- dan NH2-.

    BalasHapus